Advanced Transmission Technologies

FERC Technical Conference Hartford, Connecticut October 13, 2004

Jeffrey A. Donahue President and CEO

TransÉnergieUS

Member of the **Hydro-Québec** group

The State of Technology in Various Industries

Then

1932 Ford Sedan

2005 Ford Escape Hybrid

iMac G5

Computing Devices

Automobiles

Comptometer

Electric Transmission

Commercially Available Advanced Transmission Technologies (1)

VSC-HVDC, STATCOM, SVC, FACTS

Composite Core Conductors

(1) U.S. DOE National Transmission Grid Study – May, 2002

D-VAR, D-SMES

XLPE Cables

Advanced Transmission Technologies <u>Increase</u> Reliability

- Higher controllability over grid helps prevent cascading events
 - Prevents voltage / reactive power collapse
 - Prevents equipment overloads
- Undergrounding eliminates major causes of outages
 - Hurricanes, ice storms, tree contacts, lightning, fires
- Several studies confirm reliability of underground transmission
 - NC Utilities Commission (Nov. 2003) found that u/g outage rates are 50% less than overhead
 - MD Public Service Commission (Feb. 2000) found that u/g systems of urban utilities have lower frequency & duration of outages
 - Australian government (Nov. 1998) found that high voltage u/g systems had 80% less outages than overhead

Underground Transmission Technology Is Proven, Fully Operable and Integrated with Grid

- Europe: Almost 5500 km (3400 miles) of high voltage HVDC and HVAC > 110 kV underground transmission -- all integrated into grid
 - % of all transmission >220 kV (by length) that is underground:
 Denmark 16%; United Kingdom 6%
 - 25% of new < 400 kV transmission in France is required to be underground
- Traditional and advanced underground HVDC transmission technologies provide high availability with manufacturer warranties, availability guarantees, liquidated damages, etc.
- Advanced underground HVDC technology implemented in Sweden (Gotland 1999), Australia (2000 Directlink multi-terminal and 2002 Murraylink) and US (2002 Cross Sound Cable)

(1) Commission of the European Community Background Paper – Undergrounding of Electricity Lines in Europe, December 10, 2003

Advanced Underground HVDC Transmission Technology: Low Impacts, Affordable

- Virtually no visual impacts
- Installation techniques are very simple
 - Installation similar to underground fiber optic cable
- No Electric Fields or AC EMF issues
 - HVDC and HVAC underground cables have no electric fields
 - Advanced underground HVDC cables DC magnetic fields directly over cable are within natural variations of the earth's DC magnetic field
- Efficient use of existing rights-of-way (roads, pipelines, railroads, etc.)
- O&M cost of advanced underground HVDC less than overhead HVAC
- Advanced underground HVDC cost comparable to underground HVAC
- Advanced underground HVDC costs are declining, overhead HVAC costs are increasing

Murraylink – World's Longest Underground Transmission Link

- In operation since October 2002
- 220 MW HVDC system based on VSC
- Distance 110 miles all underground
- Average ROW width 13 feet (min 10 feet)
- Converter station sites ~ 3.5 acres each
- Permitting ~ 24 months
- Construction ~ 21 months
- 1 cable failure, found and repaired in 6 days
- 392 cable joints no failures
- Availability + 98%
- Cost (includes 132 kV and 220 kV interconnections) ~ US\$ 97M
- Annual O & M cost ~ US\$1.5M/year

Murraylink – Environmental Awards

- Australian Case EARTH Award
 - 2002 Environmental Excellence Award
- The Institution of Engineers, South Australia Division; 2003 Engineering Excellence Awards
 - Project infrastructure category
 - Overall project winner
 - Environmental category
- Royal Australian Planning Institute of South Australia; Environmental Planning and Conservation Award
- LandCare Australia; National Recognition for Re-vegetation Along Cable Route

The State of Technology in Various Industries

<u>Then</u>

<u>Now</u>

Automobiles

1932 Ford Sedan

2005 Ford Escape Hybrid

Computing Devices

Comptometer

iMac G5

Electric Transmission

For More Information.....

Our web sites:

General www.transenergieus.com

– CSC www.crosssoundcable.com

Australia www.transenergie.com.au

Contact information:

- Jeff Donahue (508) 870-9900 jeff.donahue@transenergieus.com

- Ray Coxe (508) 870-9900 ray.coxe@transenergieus.com

José Rotger (508) 870-9900 jose.rotger@transenergieus.com

BACKUP SLIDES

Cable Installation Comparison

Cable Installation Gotland - Rock Cutting

Ploughing of the HVDC Light Cable - Gotland

Murraylink Cable Installation

Murraylink – Temporary Housing for Cable Splicing

Murraylink – Land Cable Trenching

Murraylink – Open Cut Cable Trench

HVDC Light - Bridge Conduit / Cable Crossing

Existing Underground/Sub-sea HVDC Light Projects

- Sub-sea 40 km
- Underground 450 km

Planned Underground/Sub-sea HVDC Light Projects

- 430 MW
- Underground 100 km
- Sub-sea 290 km

DC Magnetic Fields

- The earth's natural DC magnetic field total intensity varies around the earth from approximately 200 mG to 700 mG
- Murraylink's maximum DC field intensity at 3 feet above the ground directly over the cable is 80 mG
- At distances from the cable greater than 10 feet, the change in the earth's natural magnetic field is extremely small

